Diamond crystal atoms pass test storing data

A man checks raw diamonds 10 August 2007 at Gold and Diamond department Sierra Leone Central Bank in Freetown. The first Sierra Leonean diamond was found in 1930, and significant production commenced in 1935. Sierra Leonean production is characterized by a high proportion of top-quality gem diamonds. Prospects look bright for Sierra Leone's post-war economic recovery but decisions of a new government coming in after the weekend elections will be crucial, the World Bank said Wednesday. AFP PHOTO / ISSOUF SANOGO (Photo credit should read ISSOUF SANOGO/AFP/Getty Images)
Getty Images

Physicists have worked out a new method of storing information in the quantum states of atoms in diamond crystals. The scientists linked the spin of individual nitrogen atoms in the diamond--impurities at the jewelry counter, but boons in the physics lab--to the spin of nearby electrons. They could form a quantum link between the spin of the nitrogen atom and the spin of a nearby electron, letting the electron store information more stably than if it were spinning on its own.

When a nitrogen is next to an empty spot in a diamond's carbon framework, it lets off an extra electron,leaving that electron free to have its quantum played around with.

Using what they call "intense microwave fields" [PDF], the physicists were able to link the spin of a nitrogen atom to a neighboring electron, a pairing sparked by magnetic fields.

Scientists have been looking at diamonds--with and without nitrogen impurities--as a quantum computing material for several years, in part because it can store quantum memory at room temperature, not the far-below-freezing temps required by some other materials.

Some have even proposed the idea of diamond supercomputers, which would store millions of times as much data as today's machines. One hurdle in quantum computing is getting the information to last long enough to use it. In the recent study, the nuclear spin stayed coherent for more than a millisecond--enough time for a ten petaflop supercomputer to do ten trillion operations.

But don't start rooting around in your hard drive for a rock just yet; diamond-based quantum computing is still a long way off.

More Tech and Science Stories from Discover Magazine