Watch CBS News

Diamond crystal atoms pass test storing data

Physicists have worked out a new method of storing information in the quantum states of atoms in diamond crystals. The scientists linked the spin of individual nitrogen atoms in the diamond--impurities at the jewelry counter, but boons in the physics lab--to the spin of nearby electrons. They could form a quantum link between the spin of the nitrogen atom and the spin of a nearby electron, letting the electron store information more stably than if it were spinning on its own.

When a nitrogen is next to an empty spot in a diamond's carbon framework, it lets off an extra electron,leaving that electron free to have its quantum played around with.

Using what they call "intense microwave fields" [PDF], the physicists were able to link the spin of a nitrogen atom to a neighboring electron, a pairing sparked by magnetic fields.

Scientists have been looking at diamonds--with and without nitrogen impurities--as a quantum computing material for several years, in part because it can store quantum memory at room temperature, not the far-below-freezing temps required by some other materials.

Some have even proposed the idea of diamond supercomputers, which would store millions of times as much data as today's machines. One hurdle in quantum computing is getting the information to last long enough to use it. In the recent study, the nuclear spin stayed coherent for more than a millisecond--enough time for a ten petaflop supercomputer to do ten trillion operations.

But don't start rooting around in your hard drive for a rock just yet; diamond-based quantum computing is still a long way off.

More Tech and Science Stories from Discover Magazine

View CBS News In
CBS News App Open
Chrome Safari Continue
Be the first to know
Get browser notifications for breaking news, live events, and exclusive reporting.