The Kanzius Machine: A Cancer Cure?

Inventor Tells 60 Minutes He Hopes To Live Long Enough To See Machine Cure Humans

But how could he focus the radio waves to destroy cancer cells?

"That was the next $64,000 question," Kanzius said.

The answer would cost much more than that. Kanzius spent about $200,000 just to have a more advanced version of his machine built. He knew that metal heats up when it's exposed to high-powered radio waves. So what if a tumor was injected with some kind of metal, and zapped with a focused beam of radio waves? Would the metal heat up and kill the cancer cells, but leave the area around them unharmed?

He did his first test with hot dogs.

"I'm going to inject it with some copper sulfate," Kanzius explained, demonstrating the machine. "And I'm going to take the probe right at the injection site."

Kanzius placed the hot dog in his radio wave machine, and Stahl watched to see if the temperature would rise in that one area where the metal solution was and nowhere else.

"And when I saw it start to go up I said, 'Eureka, I've done it,'" Kanzius remembered. "And I said, 'God, I gotta shut this off and see whether it's still cold down below.' So I shut it off, took my probe, went down here where it wasn't injected. And the temperature dropped back down. And I said, 'God, maybe I got something here.'"

Kanzius thought he had found a way attack cancer cells without the collateral damage caused by chemotherapy and radiation. Today, his invention is in the laboratories of two major research centers - the University of Pittsburgh and M.D. Anderson, where Dr. Steven Curley, a liver cancer surgeon, is testing it.

"This technology may allow us to treat just about any kind of cancer you can imagine," Dr. Curley told Stahl. "I've gotta tell you, in 20 years of research this is the most exciting thing that I've encountered."

That's because Kanzius impressed Curley with another remarkable idea: to combine the radio waves from his device with something cutting edge - space age nanoparticles made of metal or carbon. They are so small that thousands of them can fit in a single cancer cell. Because they're metallic, Kanzius was hoping his radio waves would heat them up and kill the cancer.

"If these nanoparticles work then we truly have something huge here," Kanzius told Stahl.

Enter Rick Smalley, another cancer patient at M.D. Anderson and the man who won the Nobel Prize for discovering nanoparticles made from carbon. As luck would have it, Dr. Curley was called in one day to examine Smalley. Before leaving, he asked him for some of his nanoparticles.

"I proceeded to tell him what I wanted to do and that I thought they would heat. He looked at me with sort of a studied long look and didn't say anything. And then he looked at me and said, 'It won't work,'" Curley remembered. "And just laughed and said, 'Well, look, I'll give you some. But don't be too disappointed.'"

So Dr. Curley brought a vial of those precious nanoparticles to John Kanzius.